527 research outputs found

    Reservoir-Excess Pressure Parameters Independently Predicts Cardiovascular Events in Individuals With Type 2 Diabetes.

    Get PDF
    The parameters derived from reservoir-excess pressure analysis have prognostic utility in several populations. However, evidence in type 2 diabetes (T2DM) remains scarce. We determined if these parameters were associated with T2DM and whether they would predict cardiovascular events in individuals with T2DM. We studied 306 people with T2DM with cardiovascular disease (CVD; DMCVD, 70.4±7.8 years), 348 people with T2DM but without CVD (diabetes mellitus, 67.7±8.4 years), and 178 people without T2DM or CVD (control group [CTRL], 67.2±8.9 years). Reservoir-excess pressure analysis-derived parameters, including reservoir pressure integral, peak reservoir pressure, excess pressure integral, systolic rate constant, and diastolic rate constant, were obtained by radial artery tonometry. Reservoir pressure integral was lower in DMCVD diabetes mellitus and than CTRL. Peak reservoir pressure was lower, and excess pressure integral was greater in DMCVD diabetes mellitus than and CTRL. Systolic rate constant was lower in a stepwise manner among groups (DMCVD< diabetes mellitus <CTRL). Diastolic rate constant was greater in DMCVD than CTRL. In the subgroup of individuals with T2DM (n=642), 14 deaths (6 cardiovascular and 9 noncardiovascular causes), and 108 cardiovascular events occurred during a 3-year follow-up period. Logistic regression analysis revealed that reservoir pressure integral (odds ratio, 0.59 [95% CI, 0.45-0.79]) and diastolic rate constant (odds ratio, 1.60 [95% CI, 1.25-2.06]) were independent predictors of cardiovascular events during follow-up after adjusting for conventional risk factors (both P<0.001). Further adjustments for potential confounders had no influence on associations. These findings demonstrate that altered reservoir-excess pressure analysis-derived parameters are associated with T2DM. Furthermore, baseline values of reservoir pressure integral and diastolic rate constant independently predict cardiovascular events in individuals with T2DM, indicating the potential clinical utility of these parameters for risk stratification in T2DM

    Intrauterine environmental and genetic influences on the association between birthweight and cardiovascular risk factors: studies in twins as a means of testing the fetal origins hypothesis

    Get PDF
    Evidence has accumulated that low birthweight is associated with several risk factors for cardiovascular disease. However, it is not known whether or not these associations are due to a programmed response to intrauterine malnutrition or genetic factors influencing both birthweight and cardiovascular risk factors. Twin studies offer a unique opportunity to distinguish between intrauterine and genetic origins of the association between birthweight and cardiovascular risk. In our twin cohort, low birthweight was associated with insulin resistance, lower HDL and shorter height within both dizygotic and monozygotic twin pairs, suggesting that these associations are, at least in part, independent of genetic factors. In contrast, low birthweight was associated with blood pressure, total and LDL cholesterol, fibrinogen and sympathetic activation within dizygotic twin pairs, but not within monozygotic twin pairs. These differences between dizygotic and monozygotic twins suggest that these associations are, at least in part, due to genetic factors. Therefore, both intrauterine environmental and genetic factors appear to play a role in the association between birthweight and cardiovascular risk factors. In the future, strategies may be developed targeted at improving or preventing impaired intrauterine growth. However, the effects of interventions that comprise changes in environment within the normal range may be limited due to the possible important role of genetic factor

    Effect of atorvastatin on glycaemia progression in patients with diabetes:an analysis from the Collaborative Atorvastatin in Diabetes Trial (CARDS)

    Get PDF
    AIMS/HYPOTHESIS: In an individual-level analysis we examined the effect of atorvastatin on glycaemia progression in type 2 diabetes and whether glycaemia effects reduce the prevention of cardiovascular disease (CVD) with atorvastatin. METHODS: The study population comprised 2,739 people taking part in the Collaborative Atorvastatin Diabetes Study (CARDS) who were randomised to receive atorvastatin 10 mg or placebo and who had post-randomisation HbA(1c) data. This secondary analysis used Cox regression to estimate the effect of atorvastatin on glycaemia progression, defined as an increase in HbA(1c) of ≄0.5% (5.5 mmol/mol) or intensification of diabetes therapy. Mixed models were used to estimate the effect of atorvastatin on HbA(1c) as a continuous endpoint. RESULTS: Glycaemia progression occurred in 73.6% of participants allocated placebo and 78.1% of those allocated atorvastatin (HR 1.18 [95% CI 1.08, 1.29], p < 0.001) by the end of follow-up. The HR was 1.22 (95% CI 1.19, 1.35) in men and 1.11 (95% CI 0.95, 1.29) in women (p = 0.098 for the sex interaction). A similar effect was seen in on-treatment analyses: HR 1.20 (95% CI 1.07, 1.35), p = 0.001. The net mean treatment effect on HbA(1c) was 0.14% (95% CI 0.08, 0.21) (1.5 mmol/mol). The effect did not increase through time. Diabetes treatment intensification alone did not differ with statin allocation. Neither baseline nor 1-year-attained HbA(1c) predicted subsequent CVD, and the atorvastatin effect on CVD did not vary by HbA(1c) change (interaction p value 0.229). CONCLUSIONS/INTERPRETATION: The effect of atorvastatin 10 mg on glycaemia progression among those with diabetes is statistically significant but very small, is not significantly different between sexes, does not increase with duration of statin and does not have an impact on the magnitude of CVD risk reduction with atorvastatin. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3802-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    The impact of cardiovascular co-morbidities and duration of diabetes on the association between microvascular function and glycaemic control

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Good glycaemic control in type 2 diabetes (T2DM) protects the microcirculation. Current guidelines suggest glycaemic targets be relaxed in advanced diabetes. We explored whether disease duration or pre-existing macrovascular complications attenuated the association between hyperglycaemia and microvascular function. METHODS: 743 participants with T2DM (n = 222), cardiovascular disease (CVD = 183), both (n = 177) or neither (controls = 161) from two centres in the UK, underwent standard clinical measures and endothelial dependent (ACh) and independent (SNP) microvascular function assessment using laser Doppler imaging. RESULTS: People with T2DM and CVD had attenuated ACh and SNP responses compared to controls. This was additive in those with both (ANOVA p < 0.001). In regression models, cardiovascular risk factors accounted for attenuated ACh and SNP responses in CVD, whereas HbA1c accounted for the effects of T2DM. HbA1c was associated with ACh and SNP response after adjustment for cardiovascular risk factors (adjusted standardised beta (ÎČ) -0.096, p = <0.008 and -0.135, p < 0.001, respectively). Pre-existing CVD did not modify this association (ÎČ -0.099; p = 0.006 and -0.138; p < 0.001, respectively). Duration of diabetes accounted for the association between HbA1c and ACh (ÎČ -0.043; p = 0.3), but not between HbA1c and SNP (ÎČ -0.105; p = 0.02). CONCLUSIONS: In those with T2DM and CVD, good glycaemic control is still associated with better microvascular function, whereas in those with prolonged disease this association is lost. This suggests duration of diabetes may be a better surrogate for "advanced disease" than concomitant CVD, although this requires prospective validation.This received support from the Innovative Medicines Initiative Joint Undertaking under the Grant Agreement No. 115006; http://www.imi-summit.eu

    Semaglutide Effects on Cardiovascular Outcomes in People With Overweight or Obesity (SELECT) rationale and design

    Get PDF
    Cardiovascular disease (CVD) is a major cause of morbidity and mortality. Although it has been widely appreciated that obesity is a major risk factor for CVD, treatments that produce effective, durable weight loss and the impact of weight reduction in reducing cardiovascular risk have been elusive. Instead, progress in CVD risk reduction has been achieved through medications indicated for controlling lipids, hyperglycemia, blood pressure, heart failure, inflammation, and/or thrombosis. Obesity has been implicated as promoting all these issues, suggesting that sustained, effective weight loss may have independent cardiovascular benefit. GLP-1 receptor agonists (RAs) reduce weight, improve glycemia, decrease cardiovascular events in those with diabetes, and may have additional cardioprotective effects. The GLP-1 RA semaglutide is in phase 3 studies as a medication for obesity treatment at a dose of 2.4 mg subcutaneously (s.c.) once weekly. Semaglutide Effects on Heart Disease and Stroke in Patients with Overweight or Obesity (SELECT) is a randomized, double-blind, parallel-group trial testing if semaglutide 2.4 mg subcutaneously once weekly is superior to placebo when added to standard of care for preventing major adverse cardiovascular events in patients with established CVD and overweight or obesity but without diabetes. SELECT is the first cardiovascular outcomes trial to evaluate superiority in major adverse cardiovascular events reduction for an antiobesity medication in such a population. As such, SELECT has the potential for advancing new approaches to CVD risk reduction while targeting obesity

    Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics

    Get PDF
    Objective: This paper describes the baseline characteristics of the Semaglutide Effects on Heart Disease and Stroke in Patients with Overweight or Obesity (SELECT) study, one of the largest cardiovascular (CV) outcome studies in the field of obesity, which evaluates the effect of semaglutide versus placebo on major CV events. Methods: SELECT enrolled individuals with overweight or obesity without diabetes, with prior myocardial infarction, stroke, and/or peripheral artery disease. This study reports participants' baseline characteristics in the full study population and subgroups defined by baseline glycated hemoglobin (HbA1c; <5.7%, ≄5.7 to <6.0%, ≄6.0 to <6.5%), baseline waist to height ratio tertile, and qualifying prior CV event or condition. Results: The study enrolled 17,605 participants (72.5% male) with an average (SD) age of 61.6 (8.9) years and BMI of 33.34 (5.04) kg/m2. The most common prior CV event was myocardial infarction (76.3% of participants), followed by stroke (23.3%) and peripheral artery disease (8.6%). Furthermore, 24.3% had a heart failure diagnosis. Two-thirds of participants (66%) had HbA1c in the prediabetes range (5.7%-6.4%). Across groups of increasing HbA1c, prevalence of all CV risk factors increased. Conclusions: The enrolled population in SELECT includes participants across a broad range of relevant risk categories. This will allow the study to garner information about the CV benefits of semaglutide across these relevant clinical subgroups

    Time Trends in Deaths Before Age 50 Years in People with Type 1 Diabetes:a nationwide analysis from Scotland 2004–2017

    Get PDF
    Acknowledgements We thank the SDRN Epidemiology Group: J. Chalmers (Diabetes Centre, Victoria Hospital, Kirkcaldy, UK), C. Fischbacher (Information Services Division, NHS National Services Scotland, Edinburgh, UK), B. Kennon (Queen Elizabeth University Hospital, Glasgow, UK), G. Leese (Ninewells Hospital, Dundee, UK), R. Lindsay (British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK), J. McKnight (Western General Hospital, NHS, UK), J. Petrie (Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK), R. McCrimmon (Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK), S. Philip (Grampian Diabetes Research Unit, Diabetes Centre, Aberdeen Royal Infirmary, Aberdeen, UK), D. McAllister (Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK), E. Pearson (Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK) and S. Wild (Usher Institute, University of Edinburgh, Edinburgh, UK). The SDRN Epidemiology Group resource was originally set up under Ethics ref. 11/AL/0225, PAC 33/11 now running under PBPP ref. 1617-0147. Funding This study was supported by funding from Diabetes UK (17/0005627).Peer reviewedPublisher PD
    • 

    corecore